Public API
fit_evotree
MLJModelInterface.fit
— Functionfit(
params::EvoTypes,
dtrain;
target_name,
feature_names=nothing,
weight_name=nothing,
offset_name=nothing,
deval=nothing,
print_every_n=9999,
verbosity=1
)
Main training function. Performs model fitting given configuration params
, dtrain
, target_name
and other optional kwargs.
Arguments
params::EvoTypes
: configuration info providing hyper-paramters.EvoTypes
can be one of:dtrain
: A Tables compatible training data (named tuples, DataFrame...) containing features and target variables.
Keyword arguments
target_name
: name of the target variable.feature_names = nothing
: the namesdtrain
variables to use as features. If not provided, it deafults to all variables that aren't one oftarget
,weight
oroffset
`.weight_name = nothing
: name of the variable containing weights. Ifnothing
, common weights on one will be used.offset_name = nothing
: name of the offset variable.deval
: A Tables compatible evaluation data containing features and target variables.print_every_n
: sets at which frequency logging info should be printed.verbosity
: set to 1 to print logging info during training.
fit(
params::EvoTypes{L};
x_train::AbstractMatrix,
y_train::AbstractVector,
w_train=nothing,
offset_train=nothing,
x_eval=nothing,
y_eval=nothing,
w_eval=nothing,
offset_eval=nothing,
feature_names=nothing,
early_stopping_rounds=9999,
print_every_n=9999,
verbosity=1)
Main training function. Performs model fitting given configuration params
, x_train
, y_train
and other optional kwargs.
Arguments
params::EvoTypes
: configuration info providing hyper-paramters.EvoTypes
can be one of:
Keyword arguments
x_train::Matrix
: training data of size[#observations, #features]
.y_train::Vector
: vector of train targets of length#observations
.w_train::Vector
: vector of train weights of length#observations
. Ifnothing
, a vector of ones is assumed.offset_train::VecOrMat
: offset for the training data. Should match the size of the predictions.x_eval::Matrix
: evaluation data of size[#observations, #features]
.y_eval::Vector
: vector of evaluation targets of length#observations
.w_eval::Vector
: vector of evaluation weights of length#observations
. Defaults tonothing
(assumes a vector of 1s).offset_eval::VecOrMat
: evaluation data offset. Should match the size of the predictions.feature_names = nothing
: the names of thex_train
features. If provided, should be a vector of string withlength(feature_names) = size(x_train, 2)
.print_every_n
: sets at which frequency logging info should be printed.verbosity
: set to 1 to print logging info during training.
predict
MLJModelInterface.predict
— Functionpredict(m::EvoTree, data; ntree_limit=length(m.trees), device=:cpu)
Predictions from an EvoTree model - sums the predictions from all trees composing the model. Use ntree_limit=N
to only predict with the first N
trees.
importance
EvoTrees.importance
— Functionimportance(model::EvoTree; feature_names=model.info[:feature_names])
Sorted normalized feature importance based on loss function gain. Feature names associated to the model are stored in model.info[:feature_names]
as a string Vector
and can be updated at any time. Eg: model.info[:feature_names] = new_feature_names_vec
.
Deprecated
EvoTrees.fit_evotree
— Functionfit_evotree(
params::EvoTypes,
dtrain;
target_name,
feature_names=nothing,
weight_name=nothing,
offset_name=nothing,
deval=nothing,
print_every_n=9999,
verbosity=1
)
Main training function. Performs model fitting given configuration params
, dtrain
, target_name
and other optional kwargs.
Arguments
params::EvoTypes
: configuration info providing hyper-paramters.EvoTypes
can be one of:dtrain
: A Tables compatible training data (named tuples, DataFrame...) containing features and target variables.
Keyword arguments
target_name
: name of target variable.feature_names = nothing
: the namesdtrain
variables to use as features. If not provided, it deafults to all variables that aren't one oftarget
,weight
oroffset
`.weight_name = nothing
: name of the variable containing weights. Ifnothing
, common weights on one will be used.offset_name = nothing
: name of the offset variable.deval
: A Tables compatible evaluation data containing features and target variables.print_every_n
: sets at which frequency logging info should be printed.verbosity
: set to 1 to print logging info during training.
fit_evotree(
params::EvoTypes{L};
x_train::AbstractMatrix,
y_train::AbstractVector,
w_train=nothing,
offset_train=nothing,
x_eval=nothing,
y_eval=nothing,
w_eval=nothing,
offset_eval=nothing,
feature_names=nothing,
early_stopping_rounds=9999,
print_every_n=9999,
verbosity=1)
Main training function. Performs model fitting given configuration params
, x_train
, y_train
and other optional kwargs.
Arguments
params::EvoTypes
: configuration info providing hyper-paramters.EvoTypes
can be one of:
Keyword arguments
x_train::Matrix
: training data of size[#observations, #features]
.y_train::Vector
: vector of train targets of length#observations
.w_train::Vector
: vector of train weights of length#observations
. Ifnothing
, a vector of ones is assumed.offset_train::VecOrMat
: offset for the training data. Should match the size of the predictions.x_eval::Matrix
: evaluation data of size[#observations, #features]
.y_eval::Vector
: vector of evaluation targets of length#observations
.w_eval::Vector
: vector of evaluation weights of length#observations
. Defaults tonothing
(assumes a vector of 1s).offset_eval::VecOrMat
: evaluation data offset. Should match the size of the predictions.feature_names = nothing
: the names of thex_train
features. If provided, should be a vector of string withlength(feature_names) = size(x_train, 2)
.print_every_n
: sets at which frequency logging info should be printed.verbosity
: set to 1 to print logging info during training.