Skip to content

API

Training

# NeuroTreeModels.fitFunction.
julia
function fit(
    config::NeuroTreeRegressor,
    dtrain;
    feature_names,
    target_name,
    weight_name=nothing,
    offset_name=nothing,
    deval=nothing,
    metric=nothing,
    print_every_n=9999,
    early_stopping_rounds=9999,
    verbosity=1,
    return_logger=false
)

Training function of NeuroTreeModels' internal API.

Arguments

  • config::NeuroTreeRegressor

  • dtrain: Must be a AbstractDataFrame

Keyword arguments

  • feature_names: Required kwarg, a Vector{Symbol} or Vector{String} of the feature names.

  • target_name Required kwarg, a Symbol or String indicating the name of the target variable.

  • weight_name=nothing

  • offset_name=nothing

  • deval=nothing Data for tracking evaluation metric and perform early stopping.

  • metric=nothing: evaluation metric tracked on deval. Can be one of:

    • :mse

    • :mae

    • :logloss

    • :mlogloss

    • :gaussian_mle

  • print_every_n=9999

  • early_stopping_rounds=9999

  • verbosity=1

  • return_logger=false

source


Inference

# NeuroTreeModels.inferFunction.

infer(m::NeuroTreeModel, data)

Return the inference of a NeuroTreeModel over data, where data is AbstractDataFrame.

source